

Linux on the i.MX6 – 1 day Training – Lab Book

1/41

DESIGNING WITH FREESCALE

LINUX ON THE I.MX6 (1 DAY)

LAB BOOK

Linux on the i.MX6 – 1 day Training – Lab Book

2/41

Copyright and licenses

Attribution – ShareAlike 2.5

You are free:

● To copy, distribute, display, and perform the work

● To make derivative works

● To make commercial use of the work

Under the following conditions:

Attribution: You must give the original author credit.

Share Alike: If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work. Any of
these conditions can be waived if you get permission from the copyright holder. Your fair use and
other rights are in no way affected by the above.

License text: http://creativecommons.org/licenses/by-sa/2.5/legalcode

Freescale Semiconductor. Inc © Copyright 2012, based on original work by:

Adeneo Embedded © Copyright 2012, http://www.adeneo-embedded.com

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S.

Pat. & Tm. Off.

ARM is a registered trademark of ARM Limited. Cortex-A9 and ARMv7 are trademarks of ARM

Limited. All other product or service names are the property of their respective owners.

http://creativecommons.org/licenses/by-sa/2.5/legalcode
http://www.adeneo-embedded.com/

Linux on the i.MX6 – 1 day Training – Lab Book

3/41

Introduction

Lab equipment

These labs use the following equipment:

 i.MX6 SABRE Lite board + LCD screen + Power supply

 USB SD Card reader

 USB to serial adapter

 Micro SD Card + adapter

 Micro USB cable

 Ethernet RJ45 cable

Please leave all the equipment on your table when you leave the training. The instructor and

proctors will take care of putting everything back into their boxes.

Setting up the development environment

The development environment has been prepared following the instructions detailed in a

separate document named “Preparing the development environment”. Please refer to this

document if you need to recreate that setup for yourself. Also note that the procedure might

change slightly if you decide to use different revisions of the software packages that have been

installed (e.g. Ubuntu, LTIB, etc…).

Going further

 This training features more labs than what students can typically achieve. The sections

marked as “Going further” are optional, but do not hesitate to go through them if you

finish the labs in advance.

 Additional labs are available from the 4 day Linux training. You can go through them

using the same development environment.

Tips

 The labs contain a lot of step-by-step instructions. The easiest way to go through them is

to create a text file where you copy and paste the different command lines that you have

been using. This will save you time when repeating those steps and also avoid typos

and give you the opportunity to fix issues with new lines.

 Do not hesitate to ask the instructor if you are blocked or if you think that there is a

mistake in the instructions.

 The password for all super-user operations is ‘trainee’.

Linux on the i.MX6 – 1 day Training – Lab Book

4/41

 In the lab instructions, ‘>‘ refers to the command-line interface of your host, while ‘mx6#’

or ‘#’ refer to the target shell (using the serial port).

 Only use super-user rights (“sudo <command>”) when instructed, typically when flashing

the boot media.

 Pay attention to the error messages that you might get. They will probably guide you

towards the solution.

 Console programs can usually be killed using CTRL-C.

 To copy/paste inside the shell, the shortcut is CTRL-SHIFT-C/V.

Virtual machine tips

 Use CTRL-ALT-ENTER to make the VM window full-screen (or toggle back to windowed

mode).

 When the VM is full-screen, you can reach the VMware menu by hovering the mouse at

the top of the window.

 If you experience issues with USB devices, unplug and plug the device again. Make sure

it is connected to the VM as well.

Linux on the i.MX6 – 1 day Training – Lab Book

5/41

Lab 1: Booting the board with a precompiled image

Objectives

 Update the firmware on the SD Card

 Interact with the board using the serial console

 Use the bootloader to load the kernel

Preparing the SABRE Lite board

Let’s connect our development kit.

CAUTION: some connectors are fragile, so please do not use any force when trying to

plug the different accessories.

 Plug the LCD screen to the LVDS port and the touchscreen cable to the GPIO/I2C port

(see picture)

 Connect your board to your computer:

o Ethernet RJ45 cable (directly connected to the computer)

o Serial cable (connected to the USB to serial cable)

 To boot the board, you will need to use the micro SD slot, on the top side of the board.

We will not use the SD Card slot for these labs (bottom side of the board, standard size).

Linux on the i.MX6 – 1 day Training – Lab Book

6/41

Installing the “shim”

The SABRE Lite board is set to boot from NOR by default (unless a separate connector is

used). In order to boot from the SD Card, we need to install a special program in NOR – called a

“shim” – that will instruct the i.MX6 boot program to find the bootloader on the SD Card. This

procedure typically only needs to be done once for a given board.

We will use the USB loader program and a customized version of U-Boot that will flash

everything automatically.

 Set the boot pins to 01 to boot from USB. If you look at the top of the board (when the

Ethernet is at the bottom and the audio connectors at the top), this means that the top

switch is to the left and the bottom one to the right.

 Make sure that there is not micro SD Card in your board.

 Connect the micro USB cable of your board to your PC (Caution: the connector is

fragile!)

 Turn on the board.

 Your PC should detect a new USB device. Use the VM menu and connect the “SE Blank

ARIK device” (Note: it might also be named “Freescale Input Device”). The i.MX6 device

might also appear as a HID device

Linux on the i.MX6 – 1 day Training – Lab Book

7/41

 In Linux (inside the VM), open a terminal (using the icon in the quick launch bar) and

type the following command:

> lsusb

You should see something like:

Bus 002 Device 002: ID 0e0f:0002 VMware, Inc. Virtual USB Hub

Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Bus 001 Device 002: ID 15a2:0054 Freescale Semiconductor, Inc.

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

If you cannot connect the device, do not hesitate to let the instructor know.

 Extract the USB loader program:

> cd ~/training_mx6_linux

> cd tools

> tar -xzf ../download/imx_usb_loader.tar.gz

> cd imx_usb_loader

 Start the USB loader:

> sudo ./imx_usb

Wait 30 seconds (if you have the serial configured, you will see what happens).

It will load our customized version of U-Boot to the board, along with the shim. U-Boot

will be executed and will in turn load the shim from memory and flash it to NOR.

 Unplug the power and the USB from the board to power it off entirely.

 Set the boot pins to back to 00 to boot according to the fuses setting. If you look at the

top of the board (when the Ethernet is at the bottom and the audio connectors at the

top), this means that both switches are to the right. This will set the board to boot from

fuses. Other modes are documented on the PCB itself, but they shall not be used for this

training.

Linux on the i.MX6 – 1 day Training – Lab Book

8/41

Flashing the SD Card

 Connect your SD Card reader to the PC.

 Since you are using a virtual machine, you may need to connect the USB device to the

Linux guest system. To do so, use the VMware menu (hover your mouse to the top of

the window), select to "VM/Removable Devices/[SD CARD READER NAME]" (look for

“Mass storage”) and ensure that it is checked. If it is not, select "Connect (Disconnect

from host)". The device will be accessible from Linux (inside the VM), but not from

Windows.

 Insert the SD Card into the card reader of your PC.

 To see which device the card is mounted as, run:

> dmesg

The latest message should indicate:

[467399.461149] sd 10:0:0:3: [sdc] 3854336 512-byte logical blocks: (1.97

GB/1.83 GiB)

[467399.462514] sd 10:0:0:3: [sdc] Assuming drive cache: write through

[467399.465888] sd 10:0:0:3: [sdc] Assuming drive cache: write through

[467399.465893] sdc: sdc1

This tells you that the block device is /dev/sdc (might change on your own setup).

 Make sure that you have correctly identified your SD Card reader. Further operations will

erase the drive entirely!

 Open a terminal (using the icon in the quick launch bar) and navigate to

~/training_mx6_linux/scripts/ :

> cd ~/training_mx6_linux/scripts/

 Run the flashing script with your SD Card device location. Make sure to use the actual

SD Card device node (e.g. /dev/sdc in our previous example):

Linux on the i.MX6 – 1 day Training – Lab Book

9/41

> ./flash_linux_prebuilt.sh base /dev/[SD CARD DEVICE]

Note: For this first lab, we use prebuilt binaries for bootloader, kernel and rootfs.

Setting up the serial console

 Connect your USB-to-Serial adapter to the Host PC.

o Since you are using a virtual machine, you may need to connect the USB device

to the guest system.

To do so, navigate to "VM/Removable Devices/Future Devices USB Device" (the

name might differ on your setup, depending on the adapter, e.g. it could also be

“Belkin Components”) and ensure that it is checked. If it is not, select "Connect

(Disconnect from host)". The device will be accessible from Linux (inside the

VM), but not from Windows.

 Run and configure minicom:

 > sudo minicom -s

Note: you only need super-user rights when configuring minicom. This only needs to be

done once, so make sure you only use minicom with regular rights afterwards.

 Minicom start with its configuration menu (can be invoked later using CTRL-A, followed

by O).

 Choose “Serial port setup” and set the value to “/dev/ttyUSB0” (since you are using a

USB to serial device).

Also set the Bps/Par/Bits to 115200 8N1 and disable both the Hardware and Software

flow control.

Linux on the i.MX6 – 1 day Training – Lab Book

10/41

 Validate the settings and save the configuration: in the main menu, choose “Save setup

as dfl”.

 Exit the main menu. You will see the main window of minicom, where you can actually

interact with the device.

 Press Ctrl+A then Q to exit minicom and select ‘yes’ to exit without reset.

Booting with the sample root filesystem

Note: The file ~/training_mx6_linux/files/uboot.env contains all uboot commands for each by

lab. Do not hesitate to use them if you got lost.

 Make sure you have closed the previous minicom window.

 Start minicom again, using standard rights:

> minicom -D /dev/ttyUSB0 -o -w

Note: “-w” enables line wrapping while “-o” prevents minicom from sending useless AT

commands once connected.

Make sure to remember that command-line as it is an essential tool for the rest of the

labs (and development in general).

 Insert the SD Card that you have flashed into the top micro SD slot of the board (SD4 on

the SABRE Lite).

 Turn on or reboot the board. You should see traces on the serial port.

 In the serial terminal press SPACEBAR to halt the bootloader.

 In U-Boot, clear the previous environment settings (saved in NOR):

U-Boot> destroyenv

This will clear the user environment and use the default one (by erasing the region

where the environment is permanently stored).

Linux on the i.MX6 – 1 day Training – Lab Book

11/41

 In U-Boot, specify the root filesystem location by changing the kernel command-line

parameters. Issue the following commands to set the corresponding environment

variables:

U-Boot> setenv loadaddr 0x10800000

U-Boot> setenv bootargs_lcd 'video=mxcfb0:dev=ldb,LDB-XGA,if=RGB666'

U-Boot> setenv bootargs_base 'setenv bootargs console=ttymxc1,115200

${bootargs_lcd}'

U-Boot> setenv bootargs_mmc 'setenv bootargs ${bootargs} root=/dev/mmcblk0p1

rootwait rw'

U-Boot> setenv bootcmd_mmc 'run bootargs_base bootargs_mmc; mmc dev 1; mmc

read ${loadaddr} 0x800 0x2000; bootm'

U-Boot> setenv bootcmd 'run bootcmd_mmc'

 Explanations:

setenv loadaddr

0x10800000

Address (in RAM) where the kernel image will be copied

setenv bootargs_lcd

[…]

Kernel command-line arguments to enable the LCD
LVDS display

setenv bootargs_base

[…]

Base kernel command-line arguments. Debug console
assigned to the proper debug port

setenv bootargs_mmc

[…]

Kernel command-line argument to mount the root
filesystem from the first partition of the SD Card (top slot)

setenv bootcmd_mmc Instructs the bootloader to load the kernel image from
the SD Card (top slot) sector 0x800, length 0x2000.
bootm: jump to the image at ${loadaddr}

setenv bootcmd […] Sets the default bootloader command (executed
automatically)

 Save the environment for subsequent reboots (it is saved in NOR for SABRE Lite by

default. This setting can be changed in the U-Boot configuration header file for the

board).

U-Boot> saveenv

 Since you have saved the environment, you will not need to type it every time you boot

the board (it is stored on the SD Card).

Note: remember to look at ~/training_mx6_linux/files/uboot.env if you need to need to

see the whole set of commands for each lab.

 Boot the board:

U-Boot> run bootcmd

Linux on the i.MX6 – 1 day Training – Lab Book

12/41

Note: this command can be abbreviated to ‘boot’.

 The board should boot and you will be greeted with a prompt. Login as 'root' with an

empty password.

Linux on the i.MX6 – 1 day Training – Lab Book

13/41

Lab 2: Building LTIB

Objectives

 Configuring LTIB

 Building a bootloader, kernel and root filesystem for the board

 Customizing the contents of the root filesystem

 Adding a package to LTIB

Installing LTIB

 In order to save time, LTIB has been preinstalled in the virtual machine. The installation

steps are documented in “Preparing the development environment”.

 The i.MX6 platform has been selected by default (this can be changed later using ./ltib –

selectype)

Building the filesystem for the board

 Start the LTIB configuration menu:

> cd ~/training_mx6_linux/ltib

> ./ltib -c

 You will reach the main configuration screen of LTIB:

 Make sure to remember how to get to this menu as this an essential step for

development on i.MX platforms.

 Using the menu, choose your board for u-boot: mx6q_sabrelite

 Check that the Linux 3.0.15-imx kernel has been selected.

 Review the toolchain settings:

Linux on the i.MX6 – 1 day Training – Lab Book

14/41

o Target C library type: glibc

o C library package: from toolchain only

o Toolchain component options:

 libc shared libraries

 C++ shared libraries

 libgcc*.so*

o Toolchain: ARM, gcc-4.6.2, multilib, neon optimized, gnueabi/eglibc2.13

o Toolchain command-line parameters: -O2 -march=armv7-a -mfpu=vfpv3 -mfloat-

abi=softfp

 Note: this is where you can change the optimization settings for the

toolchain.

 Go the Target Image Generation options and increase the tmpfs size to “8192k”.

 Exit and save the configuration. LTIB will build the packages specified in the

configuration.

 Once the build has completed, check that you have the following:

[LTIB]/rootfs/ Root filesystem (for NFS or direct copy to the SD Card).
For production, some additional files need to be removed
(e.g. header files and other files not used at run-time).

[LTIB]/rootfs/boot/u-boot.bin Bootloader image

[LTIB]/rootfs/boot/uImage Linux kernel image for U-Boot

We will flash these images using a similar method as the previous lab.

Note: To speed up the build process, LTIB automatically makes use of multi-core CPUs

and ccache. This can be modified in the .ltibrc file (at the root of LTIB's install directory).

Open [LTIB]/.ltibrc to see the different settings that can be changed (you can use cat

.ltibrc for that).

 Insert the SD card into your USB card reader. Use the flashing script (it will look for the

right images). Remember to use the right device for the SD Card reader:

> cd ~/training_mx6_linux/scripts

> ./flash_linux.sh /dev/[YOUR SD CARD READER]

 Insert the micro SD card into the board and boot the board.

Note: As you had already saved the environment earlier, there is no need to interrupt U-

Boot to modify the boot settings.

Linux on the i.MX6 – 1 day Training – Lab Book

15/41

Customizing the root filesystem

 Go back to the configuration of LTIB:

> cd ~/training_mx6_linux/ltib

> ./ltib -c

 From the Package list (towards the bottom of the main menu), select the following

options:

o Configure BusyBox at build time

o strace

Note: the packages have actually been selected when preparing the virtual machine for

the training.

 Exit and save. LTIB will build the selected packages.

 During the build, another option menu will appear after a while. This is the configuration

menu of BusyBox.

o Take some time to browse through the menus. You will see all the features of

BusyBox.

o Verify that BusyBox will not be compiled as a static binary:

 In the menu Busybox Settings > Build options.

o Browse the menus to see the different programs that BusyBox implements.

o Enable the lightweight HTTP server from Networking utilities > httpd. We will set

up the network in the next labs.

o Exit from the menu and save the configuration. BusyBox will now be compiled

and deployed to the root filesystem.

 Following the instructions provided in the previous section, flash your images to the SD

Card and test your system:

> cd ~/training_mx6_linux/scripts

> ./flash_linux.sh /dev/[YOUR SD CARD READER]

 Insert the micro SD card into the board and boot the board.

The login and password are now ‘root’/’root’ (the settings have been changed when

preparing the VM).

Linux on the i.MX6 – 1 day Training – Lab Book

16/41

Going further: Studying LTIB’s spec files

 Go into the ltib directory

> cd ~/training_mx6_linux/ltib

LTIB uses .spec files to describe packages. These files are located in [LTIB]dist/lfs-5.1/

> ls dist/lfs-5.1

 Let’s open a simple .spec file to understand its structure:

> gedit dist/lfs-5.1/less/less.spec

 The first lines describe some basic information about the package:

Summary : text file browser, like more, but you can go back too.

Name : less

Version : 381

Release : 1

License : GPL

Vendor : Freescale

Packager : Stuart Hughes

Group : Development/Tools

Source : less-381.tar.gz

BuildRoot : %{_tmppath}/%{name}

Prefix : %{pfx}

 The % sign is used for internal LTIB commands or access to variables (example:

%define pfx /opt/freescale/rootfs/%{_target_cpu})

 Declaration of basic rules:

%Description

...

%Prep

...

%setup

...

%Build

...

Linux on the i.MX6 – 1 day Training – Lab Book

17/41

%Install

...

%Clean

...

%Files

...

 Each rule contains the command to be executed at this stage. These commands will be

called when cross-compiling the package. They essentially map to the typical configure,

make, make install steps of open-source packages.

Linux on the i.MX6 – 1 day Training – Lab Book

18/41

Lab 3: Working with U-Boot

Objectives

 Build U-Boot from the sources

 Boot the board and work with the U-Boot shell

 Download a kernel image using TFTP

Building U-Boot

 LTIB provides a version of U-Boot that is specifically patched to support the i.MX6 reference

boards.

By default, LTIB builds U-Boot automatically, but it is usually more convenient to make a

separate copy of the source tree when modifying U-Boot. We will use LTIB to extract the

sources and create a working copy that we will modify and build on the side.

o Note: this procedure can be used for any package that LTIB provides. When

modifying a given package, it is typical to work on a separate copy and integrate the

changes back to LTIB when the development is done.

 Extract the sources:

> cd ~/training_mx6_linux/ltib

> ./ltib -m prep -p u-boot

This command instructs LTIB to unpack and to apply the patches for our board. You can

have a look at [LTIB]/config/platform/imx/u-boot.spec.in to see how this is implemented.

You will find the sources in ~/training_mx6_linux/ltib/rpm/BUILD/u-boot-2009.08.

 Copy the sources to a separate directory:

> cp -R ~/training_mx6_linux/ltib/rpm/BUILD/u-boot-2009.08

~/training_mx6_linux

 Work from your new copy:

> cd ~/training_mx6_linux/u-boot-2009.08

 Add the cross-compiling toolchain to your PATH environment variable:

> export PATH=/opt/freescale/usr/local/gcc-4.6.2-glibc-2.13-linaro-multilib-

2011.12/fsl-linaro-toolchain/bin/:$PATH

Note: this only needs to be done once per terminal, every time you open a new terminal. If

you forget to set it, you will see errors like “cannot find gcc” or your host gcc (for x86) might

be used, leading to architecture issues.

 Configure U-Boot for our board:

> make CROSS_COMPILE=arm-fsl-linux-gnueabi- mx6q_sabrelite_config

 Compile U-Boot:

Linux on the i.MX6 – 1 day Training – Lab Book

19/41

> make CROSS_COMPILE=arm-fsl-linux-gnueabi- -j4

This creates the U-Boot image (u-boot.bin) at the root of the source directory.

 Note: If you have a multi-core CPU, you can speed up the compilation by adding “-jN” to the

previous command-line – where N is the number of cores.

 We will copy the bootloader to the SD Card. The flashing script that we have used before

was doing this automatically, but we will do it manually here.

o WARNING: Make sure to use the correct device node because no confirmation

will be asked! Using the wrong device node might cause you to lose all your data!

> sudo dd if=u-boot.bin of=/dev/[SD CARD reader] bs=1k skip=1 seek=1

> sync

 Boot the board with the newly flashed bootloader and verify that it works correctly. Look at

the debugging messages and verify that the build date corresponds to today’s date.

Using the bootloader shell

 Once the serial terminal starts to display something, press the space bar to stop the boot

process and use the shell.

 During the first lab, you have set variables to describe:

o Linux kernel command line arguments

o Copy the Linux kernel from SD Card to RAM

o Start the Linux kernel at the specified RAM address

 Use help in the prompt to see the list of available commands:

U-Boot> help

 Use help boot to display the help of this specific command:

U-Boot> help boot

 Use printenv to display all the variables set:

U-Boot> printenv

Note: U-Boot accepts shorter commands as long as they are not ambiguous, e.g. 'pri' for

‘printenv’ or ‘save’ for ‘saveenv’.

 Load the kernel from SD Card to RAM (at address ${loadaddr}) and dump the first bytes:

U-Boot> mmc dev 1

U-Boot> mmc read ${loadaddr} 0x800 0x2000

U-Boot> md ${loadaddr}

You will see the kernel tag (“Linux-3.0.15-…”).

Linux on the i.MX6 – 1 day Training – Lab Book

20/41

Load the kernel image using TFTP

Using a TFTP to load the kernel can greatly speed up development times. A TFTP server has

been pre-installed and configured in the virtual machine (procedure is documented separately).

 Review the TFTP server settings:

> cat /etc/default/tftpd-hpa

We can see that the server root (“TFTP root”) is in /srv/tftp.

 (Re)start the TFTP service on your host (training purposes only, since Ubuntu starts it at

boot time once installed):

> sudo service tftpd-hpa restart

 Copy your kernel image to the TFTP root so that the board can access it:

> cp ~/training_mx6_linux/ltib/rootfs/boot/uImage /srv/tftp/

 Test if the TFTP server is working by downloading a file to the host itself:

> cd /tmp

> tftp 127.0.0.1

> get uImage

> ^D (ctrl + D)

If you received the file uImage in your tmp directory, your TFTP server has been set up

properly.

 Configure the host IP address. A preset has been created in the Network Manager. To use it,

left-click on the networking icon (top-right bar), then on “Manual eth0”. It will be connected

when the board is booted.

 Configure U-Boot to load the kernel from TFTP (IP addresses assigned manually - host IP =

192.168.234.2, board IP = 192.168.234.3):

Linux on the i.MX6 – 1 day Training – Lab Book

21/41

U-Boot> setenv kernel uImage

U-Boot> setenv autoload no

U-Boot> setenv bootcmd_tftp 'run bootargs_base bootargs_mmc; tftpboot

${loadaddr} ${serverip}:${kernel}; bootm'

U-Boot> setenv serverip 192.168.234.2

U-Boot> setenv ipaddr 192.168.234.3

U-Boot> saveenv

U-Boot> run bootcmd_tftp

Note: If you destroyed previous environment, you will need to setup the u-boot environment

from lab 1 to 4. Please refer to ~/training_mx6_linux/files/uboot.env for the full list of commands.

Going further

 Display a message at the end of int board_late_init(void):

See u-boot-2009.08/board/freescale/mx6q_sabrelite/mx6q_sabrelite.c

 Change the boot prompt:

See u-boot-2009.08/include/configs/mx6q_sabrelite.h

 Add a default environment variable (CONFIG_EXTRA_ENV_SETTINGS):

See u-boot-2009.08/include/configs/mx6q_sabrelite.h

 Information only – do not do this during the labs:

Use destroyenv to remove the user environment and use the default one (this will erase

the region where the environment is permanently stored).

Linux on the i.MX6 – 1 day Training – Lab Book

22/41

Lab 4: Cross Compiling the Linux kernel

Objectives

 Get the kernel sources from LTIB

 Apply the platform-specific patches

 Configure and cross compile the kernel

 Boot your own kernel

Get the kernel sources from LTIB

 We can get the kernel sources from LTIB as we did with U-Boot:

> cd ~/training_mx6_linux/ltib

> ./ltib -m prep -p kernel

 The sources are now present in [LTIB]/rpm/BUILD/linux-3.0.15. Let’s create a separate

copy on the side. We will use the fact that LTIB creates a hidden (since it renames the

“.git” directory) Git repository for the kernel sources.

 Restore the Git repository:

> cd ~/training_mx6_linux/ltib/rpm/BUILD/linux

> mv .gitsaved/ .git

 Create a new copy by cloning the repository:

> cd ~/training_mx6_linux

> git clone ~/training_mx6_linux/ltib/rpm/BUILD/linux linux-3.0.15

 See how the patches for your platform have been applied (done by LTIB using “git am”):

> cd linux-3.0.15

> gitk

Configure and cross compile the kernel

 To cross-compile Linux, you will use the the cross-compiling toolchain provided by LTIB.

Add the cross-compiling toolchain to your PATH:

> export PATH=/opt/freescale/usr/local/gcc-4.6.2-glibc-2.13-linaro-multilib-

2011.12/fsl-linaro-toolchain/bin/:$PATH

Note: this only needs to be done once per terminal, every time you open a new terminal. If

you forget to set it, you will see errors like “cannot find gcc” or your host gcc (for x86) might

be used, leading to architecture issues.

 Since we are using U-Boot, we need to generate a uImage, i.e. an image that is

specifically packaged for this bootloader (it essentially adds a header to the actual

Linux on the i.MX6 – 1 day Training – Lab Book

23/41

image).

The kernel build system will automatically invoke U-Boot's mkimage but we still need to

add it to the PATH. We assume U-Boot has been built during the previous labs.

> export PATH=~/training_mx6_linux/u-boot-2009.08/tools/:$PATH

 Set the default configuration for our board (only needs to be done once - generic for all

i.MX6 reference boards):

> cd ~/training_mx6_linux/linux-3.0.15

> make ARCH=arm CROSS_COMPILE=arm-fsl-linux-gnueabi- imx6_defconfig

 Check the default configuration using the menu system. This is where you will want to go

back if you need to make changes to the kernel.

> make ARCH=arm CROSS_COMPILE=arm-fsl-linux-gnueabi- menuconfig

o Make sure the system type corresponds to your device: go to System Type and

verify that you have an i.MX based processor.

o Browse through the different options to see what the kernel provides. Take a look

at the drivers section.

o When you are in the menu press the ‘/’ (slash) key to use the search feature.

Search for “CONFIG_USB_CDC_COMPOSITE”.

Linux on the i.MX6 – 1 day Training – Lab Book

24/41

o The search result will show you that the option is located in Device Drivers / USB

support / USB Gadget Support / USB Gadget Drivers.

Go to that section, highlight the item and use the Help feature to get more

information.

When the item is highlighted (see picture above), press space to change how the

driver is compiled. Make it compile as a module by pressing space until you see

an M.

 Compile the kernel image for U-Boot:

> make ARCH=arm CROSS_COMPILE=arm-fsl-linux-gnueabi- uImage -j4

Note: you can speed up the compilation by adding “-jN” to the make command-line,

where N is the number of processors on your machine.

 Verify that you can find the kernel image in arch/arm/boot/

 Compile the modules:

> make ARCH=arm CROSS_COMPILE=arm-fsl-linux-gnueabi- modules –j4

 Install the modules to your root filesystem:

> sudo make ARCH=arm INSTALL_MOD_PATH=~/training_mx6_linux/ltib/rootfs

modules_install

Note: we are using sudo here because the root filesystem is owned by root.

 Check the /lib/modules directory in your target root filesystem and make sure everything

has been installed correctly.

Testing the custom kernel

 Copy the kernel image to the TFTP root:

> cd ~/training_mx6_linux/linux-3.0.15

> cp arch/arm/boot/uImage /srv/tftp

Linux on the i.MX6 – 1 day Training – Lab Book

25/41

 Boot the board (see instructions given in the previous lab – you should not have to

modify anything) and make sure that you are indeed using the kernel that you have just

compiled (check the logs that the kernel emits when booting).

Flashing the kernel on an SD Card

 We will copy the kernel image to the SD Card. The flashing script that we have used before

was doing this automatically, but we will do it manually here.

o WARNING: Make sure to use the correct device node because no confirmation

will be asked! Using the wrong device node might cause you to lose all your data!

> sudo dd if=arch/arm/boot/uImage of=/dev/[SD CARD reader] bs=1k seek=1024

> sync

Going further

 Edit arch/arm/mach-mx6/board-mx6q_sabrelite.c and add a message at the end of

mx6_sabrelite_board_init(). You can use printk(“MESSAGE”);

Verify that the message is displayed when you boot.

 Look at arch/arm/mach-mx6/ board-mx6q_sabrelite.c and see how the board is

initialized, how the board-specific resources are declared.

Linux on the i.MX6 – 1 day Training – Lab Book

26/41

Lab 5: Using NFS

Objectives

 Mounting the root filesystem using NFS

NFS server setup

The NFS server has been prepared in the VM. We will only review the settings here (the setup

procedure is provided separately).

 See which directories are exported by NFS (i.e. made accessible on the network), use

the following command on your host:

> cat /etc/exports

You will see the following line at the end of the file:

/home/trainee/training_mx6_linux/ltib/rootfs

*(rw,no_subtree_check,async,no_root_squash,insecure)

This setting allows us to make our root filesystem accessible to anyone (most

importantly, our board) on the network. If you need to share other directories, you can

replicate this line.

 Restart the NFS service (training purposes only, since Ubuntu starts it at boot time once

installed):

> sudo service nfs-kernel-server restart

 Let’s test that our setup is correct by mounting the NFS share on the PC itself (think of it

as a loopback test):

> cd /tmp

> mkdir test_rootfs

> sudo mount -t nfs localhost:/home/trainee/training_mx6_linux/ltib/rootfs

test_rootfs

If everything goes well, you should see your root filesystem contents inside

/tmp/test_rootfs. You can now unmount the directory on your host:

> sudo umount test_rootfs

Using NFS on the target device

 Make sure that your device is still correctly connected to your PC.

 Reboot your board and press space to get to the U-Boot shell.

Linux on the i.MX6 – 1 day Training – Lab Book

27/41

o Note: The network settings have been set and saved during the previous labs. If

not:

U-Boot> setenv serverip 192.168.234.2

U-Boot> setenv ipaddr 192.168.234.3

U-Boot> setenv bootcmd_tftp 'run bootargs_base bootargs_mmc; tftpboot

${loadaddr} ${serverip}:${kernel}; bootm'

U-Boot> save

 Configure the kernel command line to mount the root filesystem from NFS:

U-Boot> setenv nfsroot /home/trainee/training_mx6_linux/ltib/rootfs

U-Boot> setenv bootargs_nfs 'setenv bootargs ${bootargs} root=/dev/nfs

ip=${ipaddr} nfsroot=${serverip}:${nfsroot}'

U-Boot> setenv bootcmd_nfs 'run bootargs_base bootargs_nfs; mmc dev 1;mmc

read ${loadaddr} 0x800 0x2000; bootm'

U-Boot> save

 Boot your device:

U-Boot> run bootcmd_nfs

Going further: Testing Qt using NFS

We will now use NFS to use a prebuilt root filesystem that contains the Qt framework libraries

and sample programs.

 Extract the prebuilt root filesystem:

> cd ~/training_mx6_linux

> mkdir rootfs_qt

> cd rootfs_qt

> sudo tar -xjf ../files/prebuilt/rootfs_qt.tar.bz2

 Add the new directory to the list of NFS exports:

> sudo gedit /etc/exports

Insert the following line at the end of the file and save it (make sure it spans on a single

line):

/home/trainee/training_mx6_linux/rootfs_qt

*(rw,no_subtree_check,async,no_root_squash,insecure)

 Restart the NFS server:

> sudo service nfs-kernel-server restart

Linux on the i.MX6 – 1 day Training – Lab Book

28/41

 Reboot your device and update the bootloader environment to update the kernel

command-line:

U-Boot> setenv nfsroot /home/trainee/training_mx6_linux/rootfs_qt

 Boot your device:

U-Boot> run bootcmd_nfs

Now that your device has booted it “sees” the same files as your host, in the NFS shared

directory.

 From your host, create a script that will be used later on the target to set up environment

for Qt:

> sudo gedit /home/trainee/training_mx6_linux/rootfs_qt/root/setup_qt.sh

And add the following lines:

#! /bin/sh

export TSLIB_CONFFILE=/usr/etc/ts.conf

export TSLIB_PLUGINDIR=/usr/lib/ts

export TSLIB_FBDEVICE=/dev/fb0

export TSLIB_TSDEVICE=/dev/input/ts0

export QWS_MOUSE_PROTO=Tslib:/dev/input/ts0

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/Trolltech/lib

Save and exit.

 On the device, you should now see the file in /root:

mx6# ls /root/

 Source that file:

mx6# source /root/setup_qt.sh

Note: as opposed to merely running the script, sourcing it will define the variables in

your current shell (instead of a forked copy that disappears when the script returns).

 Calibrate the touch screen by launching the ts_calibrate utility and following the

instructions printed on the screen:

mx6# ts_calibrate

 Run the Qt fluidlauncher example (quit with CTRL-C on the console):

mx6# cd /usr/local/Trolltech/Qt-4.8.2

mx6# cd demos/embedded/fluidlauncher

mx6# ./fluidlauncher -qws

Linux on the i.MX6 – 1 day Training – Lab Book

29/41

Lab 6: Working with applications

Objectives:

 Cross compile an application

 Use Eclipse to edit and build the source code

 Remote debugging using Eclipse

 Adding a package to LTIB

Cross compile an existing project

 Extract the multicrunch sample application:

> cd ~/training_mx6_linux

> tar xzf files/multicrunch-1.0.tar.gz

> cd multicrunch-1.0

 Look at the Makefile. See how it uses a variable named CC to refer to the compiler. We

will use it to specify the path to the cross-compiler.

 Add the cross-compiling toolchain to your PATH:

> export PATH=/opt/freescale/usr/local/gcc-4.6.2-glibc-2.13-linaro-multilib-

2011.12/fsl-linaro-toolchain/bin/:$PATH

Note: this only needs to be done once per terminal, every time you open a new terminal. If

you forget to set it, you will compile the program with the default compiler, i.e. your x86 GCC.

 Now, it is time to compile and install our application to the target root filesystem:

> cd multicrunch-1.0

> CC=arm-fsl-linux-gnueabi-gcc make

> sudo make install DESTDIR=~/training_mx6_linux/ltib/rootfs

 Check that the root filesystem contains the target binary and that it has indeed been

compiled for ARM:

> file ~/training_mx6_linux/ltib/rootfs/usr/bin/multicrunch

/home/trainee/training_mx6_linux/ltib/rootfs//usr/bin/multicrunch: ELF 32-bit

LSB executable, ARM, version 1 (SYSV), dynamically linked (uses shared libs),

for GNU/Linux 2.6.31, not stripped

Booting the device

 If you have mounted your root filesystem using NFS:

o Make sure you are not using the Qt root filesystem from the previous lab (in

/home/trainee/training_mx6_linux/ltib/rootfs)

U-Boot> setenv nfsroot

/home/trainee/training_mx6_linux/ltib/rootfs

Linux on the i.MX6 – 1 day Training – Lab Book

30/41

U-Boot> setenv bootargs_nfs 'setenv bootargs ${bootargs}

root=/dev/nfs ip=${ipaddr} nfsroot=${serverip}:${nfsroot}'

U-Boot> setenv bootcmd_nfs 'run bootargs_base bootargs_nfs; mmc

dev 1; mmc read ${loadaddr} 0x800 0x2000; bootm'

U-Boot> save

U-Boot> run bootcmd_nfs

o You will see the executable on the target without having to reboot.

 If it is on the SD Card, you can copy the executable to it, then reboot (and see how

efficient NFS is compared to that method).

Import and cross compile an existing project in Eclipse

 Eclipse has been pre-installed in the virtual machine (instructions provided separately).

 Start Eclipse by using the shortcut in the quick launch bar or by using Nautilus (the

file explorer) into ~/training_mx6_linux/tools and double-clicking on the eclipse

executable.

 Choose ‘/home/trainee/training_mx6_linux/eclipse-ws’ as the current wokspace.

 Create a new project (File / New / Makefile project with existing code)

 Fill the different fields:

o Project name: use any name you want, e.g. multicrunch-1.0

o Code location: /home/trainee/training_mx6_linux/multicrunch-1.0

o Toolchain options: Cross GCC

o Languages: C

Linux on the i.MX6 – 1 day Training – Lab Book

31/41

 Click on Finish and close the Welcome panel by clicking on the arrow-shaped icon (on

the right) to go to the Workbench.

 Right-click on your project in the Project Explorer panel (to the left) and select

Properties.

 Select ‘C/C++ Build | Discovery Options’ in the left panel (inside the C/C++ Build) and in

the main panel choose:

o ‘Discovery profiles scope’ (drop-down list) select Configuration-wide.

o ‘Compiler invocation command’: arm-fsl-linux-gnueabi-gcc

Linux on the i.MX6 – 1 day Training – Lab Book

32/41

 Select ‘Environment‘ in the left panel and edit the variable PATH.

Add the path of your toolchain (/opt/freescale/usr/local/gcc-4.6.2-glibc-2.13-linaro-

multilib-2011.12/fsl-linaro-toolchain/bin/) at the beginning of the string and separate it

with ‘:’. The entire field should look like this:

/opt/freescale/usr/local/gcc-4.6.2-glibc-2.13-linaro-multilib-2011.12/fsl-

linaro-toolchain/bin/:/bin:/usr/sbin:/usr/bin:/usr/games

Click on OK.

 Click on Add to define another variable named CC and set it to ‘arm-fsl-linux-gnueabi-

gcc’. Also select ‘Add to all configurations’.

We have seen that the Makefile uses $(CC) to invoke the cross-compiler.

 Click OK to validate your modifications.

 Use the editor to look around the .c file and see how you can jump to a symbol

declaration by CTRL-clicking on it. You can also generate a call-graph by highlighting a

function and using CTRL-ALT-H.

Linux on the i.MX6 – 1 day Training – Lab Book

33/41

Building the project

 You can now build by right clicking the project in the Project Explorer panel (to the left)

and select ‘Build Project’.

o If everything went well, you will see two binary files:

 multicrunch – [arm/le]

 multicrunch.o – [arm/le]

o If not, you might have encountered an error. Look at the Console to see the build

log. It is likely that the PATH to the cross-compiler or its name have not been set

correctly.

 You can also verify that cross compilation worked by typing in a console:

> file ~/training_mx6_linux/multicrunch-1.0/multicrunch

which should result in:

multicrunch: ELF 32-bit LSB executable, ARM, version 1 (SYSV), dynamically

linked (uses shared libs), for GNU/Linux 2.6.31, not stripped

Enabling support for remote debugging

Eclipse is able to connect to the target using the SSH protocol and to use a remote debugger

(gdb/gdbserver) to debug your application.

 To be able to remotely debug your application, you should first install all required

package on the target. They have been installed by default, so we will just verify the

settings:

> cd ~/training_mx6_linux/ltib

> ./ltib -c

 From the package list, select:

o gdb

 cross gdb

 gdbserver (auto-selected no possibility to modify)

o openssh

 Make sure that dropbear is not selected (this version does not support SFTP, which is

required to interact with Eclipse).

 Go back to the main menu and select the Target System Configuration options. Check

‘start openssh server’.

 Save and exit.

 If NFS is working, skip to the next step, otherwise, flash the root filesystem on the SD

Card and boot using the SD Card.

Linux on the i.MX6 – 1 day Training – Lab Book

34/41

 Reboot the board and log in as root. Use the NFS setup from the previous lab.

 Once the board has booted, make sure that it has an IP address:

mx6# ifconfig

You should see the following output:

root@freescale ~$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:19:B8:00:F0:21

 inet addr:192.168.234.3 Bcast:192.168.234.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

If not, assign an IP address manually using the serial shell:

mx6# ifconfig eth0 192.168.234.3

 Now, you should be able to connect to your target using SHH. If you are asked to accept

a key, say ‘yes’.

> ssh root@192.168.234.3

You should be logged on the remote system (you can use it like the serial console). To

exit that remote shell, use the ‘exit’ command:

root@freescale ~$ exit

 If you get an error saying that your password has expired, you will need to change the

root password for SSH to work (it cannot be empty for SSH to work). On the target, set

the using:

mx6# passwd

Then, make sure that the password does not expire:

mx6# awk 'BEGIN { OFS=FS = ":" } ; /^'root/' {$3=99999} {print}' <

/etc/shadow > /etc/shadow.tmp && mv /etc/shadow.tmp /etc/shadow

 From your host, copy a recent version of gdbserver that works with our toolchain.

Note: the version built by LTIB is too old to be used with our current toolchain so we

have precompiled our own from GDB 7.4. We will also not overwrite it:

> scp /home/trainee/training_mx6_linux/files/gdb/gdbserver

root@192.168.234.3:/root

Linux on the i.MX6 – 1 day Training – Lab Book

35/41

Remote debugging with Eclipse

To debug our application remotely, we need to setup a new connection to the target inside

Eclipse.

 Click on the menu Window / Open Perspective / Other…

 Select ‘Remote system explorer’.

 In the ‘Remote Systems’ panel (on the left), click on the button ‘Define a connection to

remote system’

 Select ‘SSH only’, then Next.

 Set the Hostname field to your target IP: 192.168.234.3, and click on Finish.

 Use the Remote Systems panel and expand the connection that you have created.

 You should be able to navigate into your target filesystem through Sftp Files / Root. You

will be prompted you login information:

o User: ‘root’

o Password: ‘root’

Linux on the i.MX6 – 1 day Training – Lab Book

36/41

o Check save boxes to save user ID and password

Now, we only need to configure the remote debugger.

 Click on the menu Window / Open Perspective / Other…

 Select ‘C/C++’

o Note: the perspectives can be accessed easily using the top-right tab

 Right-click on your project in the Project Explorer panel and select ‘Debug As / Debug

Configurations…’

 In the left panel, double-click on the ‘C/C++ Remote Application’ entry, then click on

‘multicrunch-1.0 Default’.

Linux on the i.MX6 – 1 day Training – Lab Book

37/41

 From the Main tab of the right panel:

o Using the ‘Name’ field, rename this configuration as: ‘multicrunch remote debug’

(for clarity only, as the name does not really matter)

o Select ‘Enable auto build’.

o Select the connection you have just created: 192.168.234.3

o Select the remote absolute file path for C/C++ Application: /root/multicrunch

 From the Arguments tab, enter the command-line arguments: --crunch 2 –monitor 4

 From the Debugger tab:

o From the Main tab:

 GDB debugger: arm-fsl-linux-gnueabi-gdb

 GDB command file: [empty]

Linux on the i.MX6 – 1 day Training – Lab Book

38/41

o From the Gdbserver Settings tab:

 Gdbserver name: /root/gdbserver

 Port number: 2345

 Click on Apply to validate your modifications.

 Click on Debug to start debugging. You will be prompted to open a Debug perspective,

say Yes.

o Note: if you encounter deployment errors, use a shell on the target to remove the

previous copy of the executable, then try again:
mx6# rm /root/multicrunch

 The multicrunch program is now running (output in the lower panel, in the Console tab).

By default, Eclipse configures GDB to stop at the first instruction.

 You can now add a breakpoint by double-clicking in the left margin corresponding to the

desired line. You can also use the “step” functions and peek at the different variables.

 If you want to restrict a breakpoint to a specific thread, you can use breakpoint filters

from the Breakpoint Properties window (see below).

Linux on the i.MX6 – 1 day Training – Lab Book

39/41

Going further: Adding your application to LTIB

Adding your custom application in LTIB is an easy task.

 First, remove the binaries that we have installed previously:

> sudo rm ~/training_mx6_linux/ltib/rootfs/usr/bin/multicrunch

 Create the .spec file in the LTIB directory:

> mkdir ~/training_mx6_linux/ltib/dist/lfs-5.1/multicrunch

> gedit ~/training_mx6_linux/ltib/dist/lfs-5.1/multicrunch/multicrunch.spec

 Edit multicrunh.spec and copy the following:

%define pfx /opt/freescale/rootfs/%{_target_cpu}

Summary : Multicore Cruncher/Monitor

Name : multicrunch

Version : 1.0

Release : 1

License : Public Domain, not copyrighted

Vendor : Adeneo

Packager : Tristan Lelong

Group : Applications/Test

Source : %{name}-%{version}.tar.gz

BuildRoot : %{_tmppath}/%{name}

Prefix : %{pfx}

%Description

%{summary}

%Prep

%setup

%Build

make

%Install

rm -rf $RPM_BUILD_ROOT

make install DESTDIR=$RPM_BUILD_ROOT/

%Clean

rm -rf $RPM_BUILD_ROOT

%Files

%defattr(-,root,root)

/usr/bin/multicrunch

 Copy the sources to the correct location to avoid downloading

Linux on the i.MX6 – 1 day Training – Lab Book

40/41

> cp /home/trainee/training_mx6_linux/files/multicrunch-1.0.tar.gz

/opt/freescale/pkgs/

 Define the package in ltib config

> gedit config/userspace/extra_packages.lkc

 And append the following:

config PKG_MULTICRUNCH

 bool "multicrunch"

 help

 cruncher/monitor for multicore plateforms

 Then we need to link it to the build system

> gedit config/userspace/pkg_map

 and append almost at the end of the file (after PKG_QT_EMBEDDED = qt-embedded)

PKG_MULTICRUNCH = multicrunch

 Configure and build ltib

> ./ltib -c

 Select the multicrunch package (packages list/extra packages)

 Save and exit, the build will start. At the end, you should be able to see that multicrunch

is installed in the ltib rootfs.

Linux on the i.MX6 – 1 day Training – Lab Book

41/41

